Small prismatodecachoron
Small prismatodecachoron | |
---|---|
![]() | |
Rank | 4 |
Type | Uniform |
Notation | |
Bowers style acronym | Spid |
Coxeter diagram | x3o3o3x (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Elements | |
Cells | 10 tetrahedra, 20 triangular prisms |
Faces | 40 triangles, 30 squares |
Edges | 60 |
Vertices | 20 |
Vertex figure | Triangular antiprism, edge lengths 1 (base) and √2 (sides) ![]() |
Edge figure | tet 3 trip 4 trip 4 trip 3 |
Measures (edge length 1) | |
Circumradius | 1 |
Hypervolume | |
Dichoral angles | Trip–4–trip: |
Tet–3–trip: | |
Central density | 1 |
Number of external pieces | 30 |
Level of complexity | 4 |
Related polytopes | |
Army | Spid |
Regiment | Spid |
Dual | Triangular-antitegmatic icosachoron |
Conjugate | None |
Abstract & topological properties | |
Flag count | 960 |
Euler characteristic | 0 |
Orientable | Yes |
Properties | |
Symmetry | A4×2, order 240 |
Convex | Yes |
Nature | Tame |
The small prismatodecachoron, or spid, also commonly called the runcinated 5-cell or runcinated pentachoron, is a convex uniform polychoron that consists of 10 regular tetrahedra and 20 triangular prisms. 2 tetrahedra and 6 triangular prisms join at each vertex. It is the result of expanding the cells of a pentachoron outwards.
The small prismatodecachoron of edge length (√5+1)/2 can be vertex-inscribed into a grand antiprism, and indeed the regular hexacosichoron as well.
It can also be obtained as one of several isogonal hulls of 2 10-3 step prisms, which could be called the triangular-prismatic 10-3 double gyrostep prism.
Gallery[edit | edit source]
-
Cross-section animation
-
Net
Vertex coordinates[edit | edit source]
The vertices of a small prismatodecachoron of edge length 1 are given by the following points:
Simpler coordinates are given by all even sign changes of:
and all permutations of the first 3 coordinates of:
Much simpler coordinates can be given in five dimensions, as all permutations of:
Representations[edit | edit source]
A small prismatodecachoron has the following Coxeter diagrams:
- x3o3o3x (full symmetry)
- xxo3ooo3oxx&#xt (A3 axial, tetrahedron-first)
- x(ou)x x(xo)o3o(xo)x&#xt (A2×A1 axial, triangular prism-first)
- (xoxxox)(uo) (oxxoxx)(ou)&#xr (A1×A1 axial)
Variations[edit | edit source]
The small prismatodecachoron has a few subsymmetrical isogonal variants:
- Small disprismatopentapentachoron - Single pen symmetry, 2 sets of each type of cell
- Triangular-prismatic 10-3 double gyrostep prism - 1 of the hulls of 10-3 step prisms, has gyrochoron symmetry
Related polychora[edit | edit source]
The small prismatodecachoron is the colonel of a 5-member regiment. Its other members include the decahemidecachoron, the prismatohemidecachoron, the prismatopentahemidecachoron, and the spinoprismatodispentachoron. The first two of these polychora have full symmetry, while the latter two have single symmetry only.
A small prismatodecachoron can be cut in half to produce two identical tetrahedron atop cuboctahedron segmentochora, with the tetrahedral bases in dual orientations. The triangular cupofastegium can also be obtained as a wedge of the small prismatodecachoron, in triangular prism-first orientation.
Uniform polychoron compounds composed of small prismatodecachora include:
Isogonal derivatives[edit | edit source]
Substitution by vertices of these following elements will produce these convex isogonal polychora:
- Tetrahedron (10): Bidecachoron
- Triangular prism (20): Biambodecachoron
- Square (30): Decachoron
- Triangle (40): Bitruncatodecachoron
- Edge (60): Rectified small prismatodecachoron
External links[edit | edit source]
- Bowers, Jonathan. "Category 11: Antipodiumverts" (#442).
- Bowers, Jonathan. "Pennic and Decaic Isogonals".
- Klitzing, Richard. "spid".
- Quickfur. "The Runcinated 5-cell".
- Wikipedia contributors. "Runcinated 5-cell".