Snub square tiling

From Polytope Wiki
Jump to navigation Jump to search
Snub square tiling
1-uniform n9.svg
Rank3
TypeUniform
SpaceEuclidean
Notation
Bowers style acronymSnasquat
Coxeter diagrams4s4o (CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png)
Elements
Faces2N triangles, N squares
EdgesN+4N
Vertices2N
Vertex figureIrregular pentagon, edge lengths 1, 1, 2, 1, 2
Measures (edge length 1)
Vertex density
Related polytopes
ArmySnasquat
RegimentSnasquat
DualCairo pentagonal tiling
ConjugateRetrosnub square tiling
Abstract & topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[4+, 4]
ConvexYes

The snub square tiling, or snasquat, is one of the eleven convex uniform tilings of the Euclidean plane. 3 snub triangles and 2 squares join at each vertex of this tiling. It can be formed by alternating the truncated square tiling and adjusting to make all edge lengths equal.

Representations[edit | edit source]

A snub square tiling has the following Coxeter diagrams:

  • s4s4o (full symmetry)
  • s4s4s (as alternated omnitruncated square tiling)

Related tilings[edit | edit source]

o4o4o truncations
Name OBSA Schläfli symbol CD diagram Picture
Square tiling squat {4,4} x4o4o
Uniform tiling 44-t0.png
Truncated square tiling tosquat t{4,4} x4x4o
Uniform tiling 44-t01.png
Rectified square tiling = Square tiling squat r{4,4} o4x4o
Uniform tiling 44-t1.png
Truncated square tiling tosquat t{4,4} o4x4x
Uniform tiling 44-t12.png
Square tiling squat {4,4} o4o4x
Uniform tiling 44-t2.png
Cantellated square tiling = Square tiling squat rr{4,4} x4o4x
Uniform tiling 44-t02.png
Omnitruncated square tiling = Truncated square tiling tosquat tr{4,4} x4x4x
Uniform tiling 44-t012.png
Snub square tiling snasquat sr{4,4} s4s4s
Uniform tiling 44-snub.png

External links[edit | edit source]