Snub tritritetragonal tiling
Jump to navigation
Jump to search
Snub tritritetragonal tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Uniform |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Stititet |
Coxeter diagram | o8s3s (![]() ![]() ![]() ![]() ![]() |
Elements | |
Faces | 8N+12N triangles, 3N squares |
Edges | 12N+24N |
Vertices | 12N |
Vertex figure | mirror-symmetric hexagon, edge lengths 1, 1, 1, 1, 1, √2 |
Measures (edge length 1) | |
Circumradius | ≈ 1.28081 i |
Related polytopes | |
Army | Stititet |
Regiment | Stititet |
Dual | Order 4-3-3 snub dual tiling |
Abstract & topological properties | |
Surface | Hyperbolic plane |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | (4,3,3)+ |
Convex | Yes |
The snub tritritetragonal tiling or stititet is a uniform tiling of the hyperbolic plane. 5 triangles and 1 square join at each vertex. It can be formed by alternation of the truncated order-8 triangular tiling, followed by adjustment of edge lengths to be all equal.
Related polytopes[edit | edit source]
Represenattions[edit | edit source]
A snub tritritetragonal tiling has the following Coxeter diagrams:
- o8s3s (
) (full symmetry)
- s3s4s3*a (
) (half symmetry)
External links[edit | edit source]
- Klitzing, Richard. "stititet".
- Wikipedia Contributors. "Snub tritetratrigonal tiling".