# Snub tritritetragonal tiling

Jump to navigation
Jump to search

Snub tritritetragonal tiling | |
---|---|

Rank | 3 |

Type | Uniform |

Space | Hyperbolic |

Notation | |

Bowers style acronym | Stititet |

Coxeter diagram | o8s3s () |

Elements | |

Faces | 8N+12N triangles, 3N squares |

Edges | 12N+24N |

Vertices | 12N |

Vertex figure | mirror-symmetric hexagon, edge lengths 1, 1, 1, 1, 1, √2 |

Measures (edge length 1) | |

Circumradius | ≈ 1.28081 i |

Related polytopes | |

Army | Stititet |

Regiment | Stititet |

Dual | Order 4-3-3 snub dual tiling |

Abstract & topological properties | |

Surface | Hyperbolic plane |

Orientable | Yes |

Genus | 0 |

Properties | |

Symmetry | (4,3,3)^{+} |

Convex | Yes |

The **snub tritritetragonal tiling** or **stititet** is a uniform tiling of the hyperbolic plane. 5 triangles and 1 square join at each vertex. It can be formed by alternation of the truncated order-8 triangular tiling, followed by adjustment of edge lengths to be all equal.

## Related polytopes[edit | edit source]

## Represenattions[edit | edit source]

A snub tritritetragonal tiling has the following Coxeter diagrams:

- o8s3s () (full symmetry)
- s3s4s3*a () (half symmetry)

## External links[edit | edit source]

- Klitzing, Richard. "stititet".

- Wikipedia Contributors. "Snub tritetratrigonal tiling".