Square-antitegmatic hecatontetracontatetrachoron
Jump to navigation
Jump to search
Square-antitegmatic hecatontetracontatetrachoron | |
---|---|
Rank | 4 |
Type | Uniform dual |
Space | Spherical |
Notation | |
Coxeter diagram | m3o4o3m |
Elements | |
Cells | 144 square antitegums |
Faces | 576 kites |
Edges | 288+384 |
Vertices | 48+192 |
Vertex figure | 192 triangular bipyramids, 48 cubes |
Measures (edge length 1) | |
Dichoral angle | |
Central density | 1 |
Related polytopes | |
Dual | Small prismatotetracontoctachoron |
Abstract properties | |
Euler characteristic | 0 |
Topological properties | |
Orientable | Yes |
Properties | |
Symmetry | F4×2, order 2304 |
Convex | Yes |
Nature | Tame |
The square-antitegmatic hecatontetracontatetrachoron is a convex isochoric polychoron with 144 square antitegums as cells. It can be obtained as the dual of the small prismatotetracontoctachoron.
It can also be constructed as the convex hull of 2 dual icositetrachora and 2 opposite rectified icositetrachora. If the icositetrachora have edge length 1, the rectified icositetrachora have edge length .
Isogonal derivatives[edit | edit source]
Substitution by vertices of these following elements will produce these convex isogonal polychora:
- Square antitegum (144): Small prismatotetracontoctachoron
- Kite (576): Rectified small prismatotetracontoctachoron
- Edge (288): Tetracontoctachoron
- Edge (384): Bitruncatotetracontoctachoron
- Vertex (48): Bitetracontoctachoron
- Vertex (192): Biambotetracontoctachoron