# Square antiprismatic symmetry

Jump to navigation
Jump to search

### Convex polytopes with (I

Square antiprismatic symmetry | |
---|---|

Rank | 3 |

Space | Spherical |

Order | 16 |

**Square antiprismatic symmetry**, also known as **squappic symmetry** and notated **(I _{2}(8)×A_{1})/2**, is a 3D spherical symmetry group. It is the symmetry group of the square antiprism.

### Subgroups[edit | edit source]

- (I
_{2}(8)+×A_{1})/2 (maximal) - (B
_{2}×A_{1})+ (maximal) - B
_{2}×I (maximal) - B
_{2}+×I - K
_{2}+×I - A
_{1}×I×I - I×I×I

### Convex polytopes with (I_{2}(8)×A_{1})/2 symmetry[edit | edit source]

- Square antiprism (isogonal)/Square antitegum (isotopic)
- Ditetragonal trapezoprism (isogonal)/Square scalenohedron (isotopic)