# Pentagrammic-octagrammic duoprism

(Redirected from Stastodip)
Pentagrammic-octagrammic duoprism
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymStastodip
Coxeter diagramx5/2o x8/3o ()
Elements
Cells8 pentagrammic prisms, 5 octagrammic prisms
Faces40 squares, 8 pentagrams, 5 octagrams
Edges40+40
Vertices40
Vertex figureDigonal disphenoid, edge lengths (5–1)/2 (base 1), 2–2 (base 2), 2 (sides)
Measures (edge length 1)
Circumradius${\displaystyle \sqrt{\frac{15-5\sqrt2-\sqrt5}{10}} ≈ 0.75451}$
Dichoral anglesStip–4–stop: 90°
Stip–5/2–stip: 45°
Stop–8/3–stop: 36°
Central density6
Number of external pieces26
Level of complexity24
Related polytopes
ArmySemi-uniform podip
RegimentStastodip
DualPentagrammic-octagrammic duotegum
ConjugatesPentagonal-octagonal duoprism, Pentagonal-octagrammic duoprism, Pentagrammic-octagonal duoprism
Abstract & topological properties
Euler characteristic0
OrientableYes
Properties
SymmetryH2×I2(8), order 160
ConvexNo
NatureTame

The pentagrammic-octagrammic duoprism, also known as stastodip or the 5/2-8/3 duoprism, is a uniform duoprism that consists of 8 pentagrammic prisms and 5 octagrammic prisms, with 2 of each at each vertex.

## Vertex coordinates

The coordinates of a pentagrammic-octagrammic duoprism, centered at the origin and with unit edge length, are given by:

• ${\displaystyle \left(±\frac12,\,-\sqrt{\frac{5-2\sqrt5}{20}},\,±\frac12,\,±\frac{\sqrt2-1}{2}\right),}$
• ${\displaystyle \left(±\frac12,\,-\sqrt{\frac{5-2\sqrt5}{20}},\,±\frac{\sqrt2-1}{2},\,±\frac12\right),}$
• ${\displaystyle \left(±\frac{\sqrt5-1}{4},\,\sqrt{\frac{5+\sqrt5}{40}},\,±\frac12,\,±\frac{\sqrt2-1}{2}\right),}$
• ${\displaystyle \left(±\frac{\sqrt5-1}{4},\,\sqrt{\frac{5+\sqrt5}{40}},\,±\frac{\sqrt2-1}{2},\,±\frac12\right),}$
• ${\displaystyle \left(0,\,-\sqrt{\frac{5-\sqrt5}{10}},\,±\frac12,\,±\frac{\sqrt2-1}{2}\right),}$
• ${\displaystyle \left(0,\,-\sqrt{\frac{5-\sqrt5}{10}},\,±\frac{\sqrt2-1}{2},\,±\frac12\right).}$