Tetradecadokon

From Polytope Wiki
Jump to navigation Jump to search
Tetradecadokon
13-simplex t0.svg
Rank13
TypeRegular
SpaceSpherical
Notation
Coxeter diagramx3o3o3o3o3o3o3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3,3,3,3,3,3,3}
Elements
Doka14 tridecahenda
Henda91 dodecadaka
Daka364 hendecaxenna
Xenna1001 decayotta
Yotta2002 enneazetta
Zetta3003 octaexa
Exa3432 heptapeta
Peta3003 hexatera
Tera2002 pentachora
Cells1001 tetrahedra
Faces364 triangles
Edges91
Vertices14
Vertex figureTridecahendon, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dihedral angle
Height
Central density1
Number of external pieces14
Level of complexity1
Related polytopes
ArmyTetradecadokon
RegimentTetradecadokon
DualTetradecadokon
ConjugateNone
Abstract & topological properties
Flag count87178291200
Euler characteristic2
OrientableYes
Properties
SymmetryA13, order 87178291200
ConvexYes
NatureTame

The tetradecadokon, also commonly called the 13-simplex, is the simplest possible non-degenerate polydokon. The full symmetry version has 14 regular tridecahenda as facets, joining 3 to a dakon and 13 to a vertex, and is one of the 3 regular polydoka. It is the 13-dimensional simplex.

Vertex coordinates[edit | edit source]

The vertices of a regular tetradecadokon of edge length 1, centered at the origin, are given by:

  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • .

Much simpler coordinates can be given in 14 dimensions, as all permutations of:

  • .