Rank13
TypeRegular
Notation
Coxeter diagramx3o3o3o3o3o3o3o3o3o3o3o3o ()
Schläfli symbol{3,3,3,3,3,3,3,3,3,3,3,3}
Elements
Doka14 tridecahenda
Daka364 hendecaxenna
Xenna1001 decayotta
Yotta2002 enneazetta
Zetta3003 octaexa
Exa3432 heptapeta
Peta3003 hexatera
Tera2002 pentachora
Cells1001 tetrahedra
Faces364 triangles
Edges91
Vertices14
Vertex figureTridecahendon, edge length 1
Measures (edge length 1)
Circumradius${\displaystyle {\frac {\sqrt {91}}{14}}\approx 0.68139}$
Inradius${\displaystyle {\frac {\sqrt {91}}{182}}\approx 0.052414}$
Hypervolume${\displaystyle {\frac {\sqrt {7}}{398529331200}}\approx 6.6388\times 10^{-12}}$
Dihedral angle${\displaystyle \arccos \left({\frac {1}{13}}\right)\approx 85.58827^{\circ }}$
Height${\displaystyle {\frac {\sqrt {91}}{13}}\approx 0.73380}$
Central density1
Number of external pieces14
Level of complexity1
Related polytopes
ConjugateNone
Abstract & topological properties
Flag count87178291200
Euler characteristic2
OrientableYes
Properties
SymmetryA13, order 87178291200
ConvexYes
NatureTame

The tetradecadokon, also commonly called the 13-simplex, is the simplest possible non-degenerate polydokon. The full symmetry version has 14 regular tridecahenda as facets, joining 3 to a dakon and 13 to a vertex, and is one of the 3 regular polydoka. It is the 13-dimensional simplex.

## Vertex coordinates

The vertices of a regular tetradecadokon of edge length 1, centered at the origin, are given by:

• ${\displaystyle \left(\pm {\frac {1}{2}},\,-{\frac {\sqrt {3}}{6}},\,-{\frac {\sqrt {6}}{12}},\,-{\frac {\sqrt {10}}{20}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,{\frac {\sqrt {3}}{3}},\,-{\frac {\sqrt {6}}{12}},\,-{\frac {\sqrt {10}}{20}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,{\frac {\sqrt {6}}{4}},\,-{\frac {\sqrt {10}}{20}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,{\frac {\sqrt {10}}{5}},\,-{\frac {\sqrt {15}}{30}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,{\frac {\sqrt {15}}{6}},\,-{\frac {\sqrt {21}}{42}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {21}}{7}},\,-{\frac {\sqrt {7}}{28}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {7}}{4}},\,-{\frac {1}{12}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {2}{3}},\,-{\frac {\sqrt {5}}{30}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {3{\sqrt {5}}}{10}},\,-{\frac {\sqrt {55}}{110}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {55}}{11}},\,-{\frac {\sqrt {66}}{132}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {66}}{12}},\,-{\frac {\sqrt {78}}{156}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {78}}{13}},\,-{\frac {\sqrt {91}}{182}}\right)}$,
• ${\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,{\frac {\sqrt {91}}{14}}\right)}$.

Much simpler coordinates can be given in 14 dimensions, as all permutations of:

• ${\displaystyle \left({\frac {\sqrt {2}}{2}},\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right)}$.