Rank2
TypeRegular
Notation
Bowers style acronymTed
Coxeter diagramx14o ()
Schläfli symbol{14}
Elements
Edges14
Vertices14
Vertex figureDyad, length ${\displaystyle 2\cos(\pi /14)}$
Measures (edge length 1)
Circumradius${\displaystyle {\frac {1}{2\sin {\frac {\pi }{14}}}}\approx 2.24698}$
Inradius${\displaystyle {\frac {1}{2\tan {\frac {\pi }{14}}}}\approx 2.19064}$
Area${\displaystyle {\frac {7}{2\tan {\frac {\pi }{14}}}}\approx 15.33450}$
Angle${\displaystyle {\frac {6\pi }{7}}\approx 154.28571^{\circ }}$
Central density1
Number of external pieces14
Level of complexity1
Related polytopes
Army' Ted'
Abstract & topological properties
Flag count28
Euler characteristic0
OrientableYes
Properties
SymmetryI2(14), order 28
Flag orbits1
ConvexYes
NatureTame

The tetradecagon, or ted, is a polygon with 14 sides. A regular tetradecagon has equal sides and equal angles.

It has two non-compound stellations, these being the tetradecagram and the great tetradecagram.

It is the uniform truncation of the heptagon.

Vertex coordinates

Coordinates for a regular tetradecagon of edge length 2sin(π/14), centered at the origin, are:

• ${\displaystyle \left(\pm 1,0\right)}$,
• ${\displaystyle \left(\pm \cos(\pi /7),\pm \sin(\pi /7)\right)}$,
• ${\displaystyle \left(\pm \cos(2\pi /7),\pm \sin(2\pm /7)\right)}$,
• ${\displaystyle \left(\pm \cos(3\pi /7),\pm \sin(3\pi /7)\right)}$.