Rank2
TypeRegular
Notation
Bowers style acronymTedag
Coxeter diagramx14/3o ()
Schläfli symbol{14/3}
Elements
Edges14
Vertices14
Measures (edge length 1)
Circumradius${\displaystyle {\frac {1}{2\sin {\frac {3\pi }{14}}}}\approx 0.80194}$
Inradius${\displaystyle {\frac {1}{2\tan {\frac {3\pi }{14}}}}\approx 0.62698}$
Area${\displaystyle {\frac {7}{2\tan {\frac {3\pi }{14}}}}\approx 4.38886}$
Angle${\displaystyle {\frac {4\pi }{7}}\approx 102.85714^{\circ }}$
Central density3
Number of external pieces28
Level of complexity2
Related polytopes
ArmyTed, edge length ${\displaystyle {\frac {1}{1+2\cos {\frac {\pi }{7}}}}}$
Abstract & topological properties
Flag count28
Euler characteristic0
Schläfli type{14}
OrientableYes
Properties
SymmetryI2(14), order 28
ConvexNo
NatureTame

The tetradecagram, or tedag, is a non-convex polygon with 14 sides. It is the second stellation of a tetradecagon. A regular tetradecagram has equal sides and equal angles.

It is one of two regular 14-sided star polygons in 2D, the other being the great tetradecagram.

It is the uniform truncation of the great heptagram.