Tetragonal-antiwedge difold tritetraswirlchoron

From Polytope Wiki
Jump to navigation Jump to search
Tetragonal-antiwedge difold tritetraswirlchoron
File:Tetragonal-antiwedge difold tritetraswirlchoron.png
Rank4
TypeIsogonal
SpaceSpherical
Elements
Cells24 phyllic disphenoids, 24 tetragonal antiwedges
Faces24+24 isosceles triangles, 48 scalene triangles, 24 isosceles trapezoids
Edges24+24+24+24
Vertices24
Vertex figureDigonal-rectangular notch
Measures (edge length 1)
Central density1
Related polytopes
DualTetragonal-antiwedge intersected tritetraswirlic icositetrachoron
Abstract & topological properties
Euler characteristic0
OrientableYes
Properties
SymmetryA3+×4, order 48
ConvexYes
NatureTame

The tetragonal-antiwedge difold tritetraswirlchoron is a convex isogonal polychoron that consists of 24 tetragonal antiwedges and 24 phyllic disphenoids. 6 tetragonal antiwedges and 4 phyllic disphenoids join at each vertex. It can be obtained as the convex hull of three hexadecachora or two orthogonal 12-5 step prisms.

The ratio between the longest and shortest edges is 1: ≈ 1:1.84776.

Vertex coordinates[edit | edit source]

Coordinates for the vertices of a tetragonal-antiwedge difold tritetraswirlchoron are given by:

  • (a*sin(2πk/12), a*cos(2πk/12), b*sin(10πk/12), b*cos(10πk/12)),
  • (b*sin(2πk/12), b*cos(2πk/12), a*sin(10πk/12), a*cos(10πk/12)),

where a = 18-63/6, b = 18+63/6 and k is an integer from 0 to 11.

External links[edit | edit source]