Tetrahedral symmetry

From Polytope Wiki
Jump to navigation Jump to search
Tetrahedral symmetry
Tetrahedral reflection domains.png
Rank3
SpaceSpherical
Order24
Info
Coxeter diagramCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Elements
Axes3 × (BC2×A1)/2, 4 × A2×I
Related polytopes
OmnitruncateGreat rhombitetratetrahedron

Tetrahedral symmetry, also known as tettic symmetry and notated A3, is a 3D spherical Coxeter group. It is the symmetry group of the regular tetrahedron.

Subgroups[edit | edit source]

Convex polytopes with A3 symmetry[edit | edit source]

Wythoffians with A3 symmetry[edit | edit source]

o3o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Tetrahedron tet {3,3} x3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Uniform polyhedron-33-t0.png
Truncated tetrahedron tut t{3,3} x3x3o (CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png)
Uniform polyhedron-33-t01.png
Tetratetrahedron = Octahedron oct r{3,3} o3x3o (CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png)
Uniform polyhedron-33-t1.png
Truncated tetrahedron tut t{3,3} o3x3x (CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Uniform polyhedron-33-t12.png
Tetrahedron tet {3,3} o3o3x (CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png)
Uniform polyhedron-33-t2.png
Small rhombitetratetrahedron = Cuboctahedron co rr{3,3} x3o3x (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png)
Uniform polyhedron-33-t02.png
Great rhombitetratetrahedron = Truncated octahedron toe tr{3,3} x3x3x (CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Uniform polyhedron-33-t012.png
Snub tetrahedron = Icosahedron ike sr{3,3} s3s3s (CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png)
Uniform polyhedron-33-s012.png