Tortuous tunnel

From Polytope Wiki
Jump to navigation Jump to search
Tortuous tunnel
Rank3
TypeQuasi-convex Stewart toroid
Notation
Stewart notationM,
Q3Q3/S3S3
Elements
Faces6 squares, 6+6+6 triangles
Edges3+3+3+6+12+12
Vertices3+6+6
Measures (edge length 1)
Volume
Surface area
Related polytopes
Convex hullTriangular orthobicupola
Abstract & topological properties
Flag count156
Euler characteristic0
SurfaceTorus
OrientableYes
Genus1
Properties
SymmetryA2×A1, order 12
Flag orbits13
ConvexNo

The tortuous tunnel or M is a quasi-convex Stewart toroid. It can be made by excavating 2 octahedra from a triangular orthobicupola. It has the fewest vertices of any known quasi-convex Stewart toroid, with 15.

Vertex coordinates[edit | edit source]

A tortuous tunnel with edge length 1 has the following vertex coordinates:

  • ,
  • ,
  • ,
  • ,
  • ,
  • .

Gallery[edit | edit source]

External links[edit | edit source]

Bibliography[edit | edit source]

  • Stewart, Bonnie (1964). Adventures Amoung the Toroids (2 ed.). ISBN 0686-119 36-3.