Triangular tegum

From Polytope Wiki
Jump to navigation Jump to search
Triangular tegum
Triangular bipyramid 2.png
Bowers style acronymTrit
Coxeter diagramoxo3ooo&#xt
SymmetryA2×A1, order 12
Vertex figures2 triangles, edge length 1
 3 rhombi, edge length 1
Faces6 triangles
Measures (edge length 1)
Dihedral angles3–3 equatorial:
 3–3 pyramidal:
Central density1
Euler characteristic2
Related polytopes
DualSemi-uniform Triangular prism
ConjugateTriangular tegum

The triangular tegum, or trit, also called a triangular bipyramid, triangular dipyramid or tridpy, is one of the 92 Johnson solids (J12). It has 6 equilateral triangles as faces, with 2 order-3 and 3 order-4 vertices. It can be constructed by joining two regular tetrahedra at one of their faces.

It is one of three regular polygonal tegums to be CRF. The others are the regular octahedron (square tegum) and the pentagonal tegum.

Vertex coordinates[edit | edit source]

A triangular tegum of edge length 1 has the following vertices:

Representations[edit | edit source]

A triangular tegum has the following Coxeter diagrams:

  • oxo3ooo&#xt (as tower)
  • yo ox3oo&#zx (y = 26/3, as tegum product)
  • oyo oox&#xt (digonal symmetry)

Variations[edit | edit source]

The triangular tegum can have the height of its pyramids varied while maintaining its full symmetry These variations generally have 6 isosceles triangles for faces.

One notable variations can be obtained as the dual of the uniform triangular prism, which can be represented by m2m3o. In this variant the side edges are exactly times the length of the edges of the base triangle, and all the dihedral angles are . Each face has apex angle and base angles . If the base triangle has edge length 1, its height is .

A triangular tegum with base edges of length b and side edges of length l has volume given by .

Other triangular bipyramids[edit | edit source]

Besides this fully symmetric version, other 5-vertex polyhedra with 6 triangular faces exist:

Related polyhedra[edit | edit source]

A triangular prism can be inserted between the halves of the triangular tegum to produce the elongated triangular bipyramid. Trying to insert a regular octahedron (as a triangular antiprism) would result in pairs of triangles becoming coplanar and turning into 60°/120° rhombi, resulting in a triangular antitegum, a variant of the cube.

External links[edit | edit source]