Tridecahendon
Rank 12 Type Regular Space Spherical Notation Coxeter diagram x3o3o3o3o3o3o3o3o3o3o3o ( ) Schläfli symbol {3,3,3,3,3,3,3,3,3,3,3} Elements Henda 13 dodecadaka Daka 78 hendecaxenna Xenna 286 decayotta Yotta 715 enneazetta Zetta 1287 octaexa Exa 1716 heptapeta Peta 1716 hexatera Tera 1287 pentachora Cells 715 tetrahedra Faces 286 triangles Edges 78 Vertices 13 Vertex figure Dodecadakon , edge length 1Measures (edge length 1) Circumradius
78
13
≈
0.67937
{\displaystyle \frac{\sqrt{78}}{13} \approx 0.67937}
Inradius
78
156
≈
0.056614
{\displaystyle \frac{\sqrt{78}}{156} \approx 0.056614}
Hypervolume
13
30656102400
≈
1.1761
×
10
−
10
{\displaystyle \frac{\sqrt{13}}{30656102400} \approx 1.1761×10^{-10}}
Dihedral angle
arccos
(
1
12
)
≈
85.21981
∘
{\displaystyle \arccos\left(\frac{1}{12}\right) \approx 85.21981^\circ}
Height
78
12
≈
0.73598
{\displaystyle \frac{\sqrt{78}}{12} \approx 0.73598}
Central density 1 Number of external pieces 13 Level of complexity 1 Related polytopes Army Tridecahendon Regiment Tridecahendon Dual Tridecahendon Conjugate None Abstract & topological properties Flag count6227020800 Euler characteristic 0 Orientable Yes Properties Symmetry A12 , order 6227020800Convex Yes Nature Tame
The tridecahendon (older name tridecahendakon ), also commonly called the 12-simplex , is the simplest possible non-degenerate polyhendon . The full symmetry version has 13 regular dodecadaka as facets, joining 3 to a xennon and 12 to a vertex, and is one of the 3 regular polyhenda . It is the 12-dimensional simplex .
The vertices of a regular tridecahendon of edge length 1, centered at the origin, are given by:
(
±
1
2
,
−
3
6
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(\pm\frac{1}{2},\,-\frac{\sqrt{3}}{6},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
3
3
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,\frac{\sqrt{3}}{3},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
6
4
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,\frac{\sqrt{6}}{4},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
10
5
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,\frac{\sqrt{10}}{5},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
15
6
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,0,\,\frac{\sqrt{15}}{6},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
21
7
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{21}}{7},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
7
4
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt7}{4},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
3
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac23,\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
3
5
10
,
−
55
110
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{3\sqrt5}{10},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
55
11
,
−
66
132
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{55}}{11},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
66
12
,
−
78
156
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{66}}{12},\,-\frac{\sqrt{78}}{156}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
78
13
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{78}}{13}\right)}
.
Much simpler coordinates can be given in 13 dimensions , as all permutations of:
(
2
2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left(\frac{\sqrt2}{2},\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right)}
.