Tridecahendon

From Polytope Wiki
Jump to navigation Jump to search
Tridecahendon
12-simplex t0.svg
Rank12
TypeRegular
SpaceSpherical
Notation
Coxeter diagramx3o3o3o3o3o3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3,3,3,3,3,3}
Elements
Henda13 dodecadaka
Daka78 hendecaxenna
Xenna286 decayotta
Yotta715 enneazetta
Zetta1287 octaexa
Exa1716 heptapeta
Peta1716 hexatera
Tera1287 pentachora
Cells715 tetrahedra
Faces286 triangles
Edges78
Vertices13
Vertex figureDodecadakon, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dihedral angle
Height
Central density1
Number of external pieces13
Level of complexity1
Related polytopes
ArmyTridecahendon
RegimentTridecahendon
DualTridecahendon
ConjugateNone
Abstract & topological properties
Flag count6227020800
Euler characteristic0
OrientableYes
Properties
SymmetryA12, order 6227020800
ConvexYes
NatureTame

The tridecahendon (older name tridecahendakon), also commonly called the 12-simplex, is the simplest possible non-degenerate polyhendon. The full symmetry version has 13 regular dodecadaka as facets, joining 3 to a xennon and 12 to a vertex, and is one of the 3 regular polyhenda. It is the 12-dimensional simplex.

Vertex coordinates[edit | edit source]

The vertices of a regular tridecahendon of edge length 1, centered at the origin, are given by:

  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • .

Much simpler coordinates can be given in 13 dimensions, as all permutations of:

  • .